Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor

The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K(20)) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 66(2012), 2 vom: 05., Seite 377-84
1. Verfasser: Robles, A (VerfasserIn)
Weitere Verfasser: Durán, F, Ruano, M V, Ribes, J, Ferrer, J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Membranes, Artificial
Beschreibung
Zusammenfassung:The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K(20)) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33 °C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm(3) m(-2)h(-1) (measured as Specific Gas Demand referred to membrane area). A linear dependence of K(20) on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L(-1) and J(20) of 10 LMH. K(20) was maintained at sustainable values (about 100 LMH bar(-1)) even at high MLTS concentrations (up to 20 g L(-1)). In addition, several short-tests were carried out when the membranes were operated at high MLTS concentrations in order to assess the effect of the physical cleaning strategies (relaxation and back-flush) on membrane performance. It was observed that, with the applied gas sparging intensity, the duration of the relaxation stage did not critically affect the membrane performance. On the other hand, the required back-flush frequency was considerably affected by the MLTS concentration
Beschreibung:Date Completed 28.08.2012
Date Revised 15.06.2012
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2012.196