Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death

Copyright © 2012 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 57(2012) vom: 16. Aug., Seite 120-33
1. Verfasser: Boubakri, Hatem (VerfasserIn)
Weitere Verfasser: Wahab, Mohamed Ali, Chong, Julie, Bertsch, Christophe, Mliki, Ahmed, Soustre-Gacougnolle, Isabelle
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Hydrogen Peroxide BBX060AN9V Thiamine X66NSO3N35
Beschreibung
Zusammenfassung:Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Recently, thiamine (VitaminB1) has been shown to induce resistance against Pseudomonas syringae in Arabidopsis plants through priming of defense responses. In this paper, we have demonstrated the efficiency of thiamine to induce resistance against downy mildew caused by the oomycete Plasmopara viticola in a susceptible Vitis vinifera cultivar "Chardonnay" under glasshouse controlled conditions by providing a dual mode of action involving direct antifungal activity and elicitation of host-defense responses. Thiamine-induced defense responses included the generation of hydrogen peroxide (H(2)O(2)) in both grapevine suspension cultured cells (SCC) and plant leaves, upregulation of an array of defense-related genes and the induction of other defense responses at subcellular level such as callose deposition in stomata cells, phenolic compounds accumulation and hypersensitive response (HR) like-cell death. Epifluorescence microscopy studies revealed dramatic changes in P. viticola individual developmental stages during its colonization of the intercellular space of the leaf mesophyll in thiamine-treated plants. Collectively, our report evidenced the efficiency of thiamine in the control of downy mildew in grapevine by direct and indirect effects, suggesting that thiamine could be an attractive alternative to chemical fungicides in disease management in vineyards
Beschreibung:Date Completed 30.11.2012
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2012.05.016