Visual-textual joint relevance learning for tag-based social image search

Due to the popularity of social media websites, extensive research efforts have been dedicated to tag-based social image search. Both visual information and tags have been investigated in the research field. However, most existing methods use tags and visual characteristics either separately or sequ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 22(2013), 1 vom: 09. Jan., Seite 363-76
1. Verfasser: Gao, Yue (VerfasserIn)
Weitere Verfasser: Wang, Meng, Zha, Zheng-Jun, Shen, Jialie, Li, Xuelong, Wu, Xindong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM218578601
003 DE-627
005 20231224040806.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2202676  |2 doi 
028 5 2 |a pubmed24n0728.xml 
035 |a (DE-627)NLM218578601 
035 |a (NLM)22692911 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Yue  |e verfasserin  |4 aut 
245 1 0 |a Visual-textual joint relevance learning for tag-based social image search 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2013 
500 |a Date Revised 27.12.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Due to the popularity of social media websites, extensive research efforts have been dedicated to tag-based social image search. Both visual information and tags have been investigated in the research field. However, most existing methods use tags and visual characteristics either separately or sequentially in order to estimate the relevance of images. In this paper, we propose an approach that simultaneously utilizes both visual and textual information to estimate the relevance of user tagged images. The relevance estimation is determined with a hypergraph learning approach. In this method, a social image hypergraph is constructed, where vertices represent images and hyperedges represent visual or textual terms. Learning is achieved with use of a set of pseudo-positive images, where the weights of hyperedges are updated throughout the learning process. In this way, the impact of different tags and visual words can be automatically modulated. Comparative results of the experiments conducted on a dataset including 370+images are presented, which demonstrate the effectiveness of the proposed approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Zha, Zheng-Jun  |e verfasserin  |4 aut 
700 1 |a Shen, Jialie  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
700 1 |a Wu, Xindong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 22(2013), 1 vom: 09. Jan., Seite 363-76  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:22  |g year:2013  |g number:1  |g day:09  |g month:01  |g pages:363-76 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2202676  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 22  |j 2013  |e 1  |b 09  |c 01  |h 363-76