l2 Restoration of l∞-decoded images via soft-decision estimation

The l(∞)-constrained image coding is a technique to achieve substantially lower bit rate than strictly (mathematically) lossless image coding, while still imposing a tight error bound at each pixel. However, this technique becomes inferior in the l(2) distortion metric if the bit rate decreases f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 12 vom: 09. Dez., Seite 4797-807
1. Verfasser: Zhou, Jiantao (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin, Zhang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM218578547
003 DE-627
005 20231224040806.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2202672  |2 doi 
028 5 2 |a pubmed24n0728.xml 
035 |a (DE-627)NLM218578547 
035 |a (NLM)22692907 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Jiantao  |e verfasserin  |4 aut 
245 1 0 |a l2 Restoration of l∞-decoded images via soft-decision estimation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.05.2013 
500 |a Date Revised 29.11.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The l(∞)-constrained image coding is a technique to achieve substantially lower bit rate than strictly (mathematically) lossless image coding, while still imposing a tight error bound at each pixel. However, this technique becomes inferior in the l(2) distortion metric if the bit rate decreases further. In this paper, we propose a new soft decoding approach to reduce the l(2) distortion of l(∞)-decoded images and retain the advantages of both minmax and least-square approximations. The soft decoding is performed in a framework of image restoration that exploits the tight error bounds afforded by the l(∞)-constrained coding and employs a context modeler of quantization errors. Experimental results demonstrate that the l(∞)-constrained hard decoded images can be restored to gain more than 2 dB in peak signal-to-noise ratio PSNR, while still retaining tight error bounds on every single pixel. The new soft decoding technique can even outperform JPEG 2000 (a state-of-the-art encoder-optimized image codec) for bit rates higher than 1 bpp, a critical rate region for applications of near-lossless image compression. All the coding gains are made without increasing the encoder complexity as the heavy computations to gain coding efficiency are delegated to the decoder 
650 4 |a Journal Article 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 12 vom: 09. Dez., Seite 4797-807  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:12  |g day:09  |g month:12  |g pages:4797-807 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2202672  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 12  |b 09  |c 12  |h 4797-807