Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled examples to train a binary classifier, while...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 3 vom: 21. März, Seite 597-610
1. Verfasser: Zhou, Xiaowei (VerfasserIn)
Weitere Verfasser: Yang, Can, Yu, Weichuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of complex scenarios
Beschreibung:Date Completed 25.11.2015
Date Revised 10.09.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2012.132