Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

The voltage-sensor domain (VSD) is a modular four-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of X-ray crystal structures for a few voltage-gated potassium (Kv) cha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 28 vom: 17. Juli, Seite 10504-20
1. Verfasser: Gupta, S (VerfasserIn)
Weitere Verfasser: Dura, J A, Freites, J A, Tobias, D J, Blasie, J K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Lipid Bilayers Phospholipids Potassium Channels, Voltage-Gated
LEADER 01000naa a22002652 4500
001 NLM218521642
003 DE-627
005 20231224040643.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la301219z  |2 doi 
028 5 2 |a pubmed24n0728.xml 
035 |a (DE-627)NLM218521642 
035 |a (NLM)22686684 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gupta, S  |e verfasserin  |4 aut 
245 1 0 |a Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.12.2012 
500 |a Date Revised 21.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The voltage-sensor domain (VSD) is a modular four-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of X-ray crystal structures for a few voltage-gated potassium (Kv) channels and a voltage-gate sodium (Nav) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e., nonconducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially oriented within a single phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) membrane investigated by X-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces, thus achieving partial to full hydration, respectively (Gupta et al. Phys. Rev. E2011, 84, 031911-1-15). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the submolecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected submolecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD's water pore. This approach was extended to the full-length Kv-channel (KvAP) at a solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Lipid Bilayers  |2 NLM 
650 7 |a Phospholipids  |2 NLM 
650 7 |a Potassium Channels, Voltage-Gated  |2 NLM 
700 1 |a Dura, J A  |e verfasserin  |4 aut 
700 1 |a Freites, J A  |e verfasserin  |4 aut 
700 1 |a Tobias, D J  |e verfasserin  |4 aut 
700 1 |a Blasie, J K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 28 vom: 17. Juli, Seite 10504-20  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:28  |g day:17  |g month:07  |g pages:10504-20 
856 4 0 |u http://dx.doi.org/10.1021/la301219z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 28  |b 17  |c 07  |h 10504-20