Independently controlling protein dot size and spacing in particle lithography

Particle lithography is a relatively simple, inexpensive technique used to pattern inorganics, metals, polymers, and biological molecules on the micro- and nanometer scales. Previously, we used particle lithography to create hexagonal patterns of protein dots in a protein resistant background of met...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 25 vom: 26. Juni, Seite 9656-63
1. Verfasser: Taylor, Zachary R (VerfasserIn)
Weitere Verfasser: Keay, Joel C, Sanchez, Ernest S, Johnson, Matthew B, Schmidtke, David W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Colloids Immobilized Proteins Membrane Glycoproteins P-selectin ligand protein Proteins src-Family Kinases EC 2.7.10.2
Beschreibung
Zusammenfassung:Particle lithography is a relatively simple, inexpensive technique used to pattern inorganics, metals, polymers, and biological molecules on the micro- and nanometer scales. Previously, we used particle lithography to create hexagonal patterns of protein dots in a protein resistant background of methoxy-poly(ethylene glycol)-silane (mPEG-sil). In this work, we describe a simple heating procedure to overcome a potential limitation of particle lithography: the simultaneous change in feature size and center-to-center spacing as the diameter of the spheres used in the lithographic mask is changed. Uniform heating was used to make single-diameter protein patterns with dot sizes of approximately 2-4 or 2-8 μm, depending on the diameter of the spheres used in the lithographic mask, while differential heating was used to make a continuous gradient of dot sizes of approximately 1-9 μm on a single surface. We demonstrate the applicability of these substrates by observing the differences in neutrophil spreading on patterned and unpatterned protein coated surfaces
Beschreibung:Date Completed 31.10.2012
Date Revised 26.06.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la300806m