Bayesian technique for image classifying registration

In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally inten...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 9 vom: 29. Sept., Seite 4080-91
1. Verfasser: Hachama, Mohamed (VerfasserIn)
Weitere Verfasser: Desolneux, Agnès, Richard, Frédéric J P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM218185170
003 DE-627
005 20231224035808.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2200495  |2 doi 
028 5 2 |a pubmed24n0727.xml 
035 |a (DE-627)NLM218185170 
035 |a (NLM)22645269 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hachama, Mohamed  |e verfasserin  |4 aut 
245 1 0 |a Bayesian technique for image classifying registration 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.12.2012 
500 |a Date Revised 21.08.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast-enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. The model also includes a class map which locates pixels of the two classes and weighs the two mixture components. The registration problem is formulated both as an energy minimization problem and as a maximum a posteriori estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated simultaneously, leading to an original combination of registration and classification that we call image classifying registration. Whenever sufficient information about class location is available in applications, the registration can also be performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its ability to take into account spatial variations of intensity dependencies while keeping a good registration accuracy 
650 4 |a Journal Article 
700 1 |a Desolneux, Agnès  |e verfasserin  |4 aut 
700 1 |a Richard, Frédéric J P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 9 vom: 29. Sept., Seite 4080-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:9  |g day:29  |g month:09  |g pages:4080-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2200495  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 9  |b 29  |c 09  |h 4080-91