SLIC superpixels compared to state-of-the-art superpixel methods

Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 11 vom: 15. Nov., Seite 2274-82
1. Verfasser: Achanta, Radhakrishna (VerfasserIn)
Weitere Verfasser: Shaji, Appu, Smith, Kevin, Lucchi, Aurelien, Fua, Pascal, Süsstrunk, Sabine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM218154410
003 DE-627
005 20231224035725.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0727.xml 
035 |a (DE-627)NLM218154410 
035 |a (NLM)22641706 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Achanta, Radhakrishna  |e verfasserin  |4 aut 
245 1 0 |a SLIC superpixels compared to state-of-the-art superpixel methods 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.04.2013 
500 |a Date Revised 16.03.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shaji, Appu  |e verfasserin  |4 aut 
700 1 |a Smith, Kevin  |e verfasserin  |4 aut 
700 1 |a Lucchi, Aurelien  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
700 1 |a Süsstrunk, Sabine  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 11 vom: 15. Nov., Seite 2274-82  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:11  |g day:15  |g month:11  |g pages:2274-82 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 11  |b 15  |c 11  |h 2274-82