Hybrid surface design for robust superhydrophobicity

Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 25 vom: 26. Juni, Seite 9606-15
1. Verfasser: Dash, Susmita (VerfasserIn)
Weitere Verfasser: Alt, Marie T, Garimella, Suresh V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM218093527
003 DE-627
005 20231224035602.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la301743p  |2 doi 
028 5 2 |a pubmed24n0727.xml 
035 |a (DE-627)NLM218093527 
035 |a (NLM)22630787 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dash, Susmita  |e verfasserin  |4 aut 
245 1 0 |a Hybrid surface design for robust superhydrophobicity 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.10.2012 
500 |a Date Revised 26.06.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces 
650 4 |a Journal Article 
700 1 |a Alt, Marie T  |e verfasserin  |4 aut 
700 1 |a Garimella, Suresh V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 25 vom: 26. Juni, Seite 9606-15  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:25  |g day:26  |g month:06  |g pages:9606-15 
856 4 0 |u http://dx.doi.org/10.1021/la301743p  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 25  |b 26  |c 06  |h 9606-15