Generative Bayesian image super resolution with natural image prior

We propose a new single image super resolution (SR) algorithm via Bayesian modeling with a natural image prior modeled by a high-order Markov random field (MRF). SR is one of the long-standing and active topics in image processing community. It is of great use in many practical applications, such as...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 9 vom: 07. Sept., Seite 4054-67
Auteur principal: Zhang, Haichao (Auteur)
Autres auteurs: Zhang, Yanning, Li, Haisen, Huang, Thomas S
Format: Article en ligne
Langue:English
Publié: 2012
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652c 4500
001 NLM217975771
003 DE-627
005 20250214005839.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2199330  |2 doi 
028 5 2 |a pubmed25n0726.xml 
035 |a (DE-627)NLM217975771 
035 |a (NLM)22614649 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Haichao  |e verfasserin  |4 aut 
245 1 0 |a Generative Bayesian image super resolution with natural image prior 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.12.2012 
500 |a Date Revised 21.08.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a new single image super resolution (SR) algorithm via Bayesian modeling with a natural image prior modeled by a high-order Markov random field (MRF). SR is one of the long-standing and active topics in image processing community. It is of great use in many practical applications, such as astronomical observation, medical imaging, and the adaptation of low-resolution contents onto high-resolution displays. One category of the conventional approaches for image SR is formulating the problem with Bayesian modeling techniques and then obtaining its maximum-a-posteriori solution, which actually boils down to a regularized regression task. Although straightforward, this approach cannot exploit the full potential offered by the probabilistic modeling, as only the posterior mode is sought. On the other hand, current Bayesian SR approaches using the posterior mean estimation typically use very simple prior models for natural images to ensure the computational tractability. In this paper, we present a Bayesian image SR approach with a flexible high-order MRF model as the prior for natural images. The minimum mean square error (MMSE) criteria are used for estimating the HR image. A Markov chain Monte Carlo-based sampling algorithm is presented for obtaining the MMSE solution. The proposed method cannot only enjoy the benefits offered by the flexible prior, but also has the advantage of making use of the probabilistic modeling to perform a posterior mean estimation, thus is less sensitive to the local minima problem as the MAP solution. Experimental results indicate that the proposed method can generate competitive or better results than state-of-the-art SR algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zhang, Yanning  |e verfasserin  |4 aut 
700 1 |a Li, Haisen  |e verfasserin  |4 aut 
700 1 |a Huang, Thomas S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 9 vom: 07. Sept., Seite 4054-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:21  |g year:2012  |g number:9  |g day:07  |g month:09  |g pages:4054-67 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2199330  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 9  |b 07  |c 09  |h 4054-67