SAR-based terrain classification using weakly supervised hierarchical Markov aspect models

We introduce the hierarchical Markov aspect model (HMAM), a computationally efficient graphical model for densely labeling large remote sensing images with their underlying terrain classes. HMAM resolves local ambiguities efficiently by combining the benefits of quadtree representations and aspect m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 9 vom: 07. Sept., Seite 4232-43
1. Verfasser: Yang, Wen (VerfasserIn)
Weitere Verfasser: Dai, Dengxin, Triggs, Bill, Xia, Gui-Song
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM217975674
003 DE-627
005 20250214005838.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2199127  |2 doi 
028 5 2 |a pubmed25n0726.xml 
035 |a (DE-627)NLM217975674 
035 |a (NLM)22614643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Wen  |e verfasserin  |4 aut 
245 1 0 |a SAR-based terrain classification using weakly supervised hierarchical Markov aspect models 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.12.2012 
500 |a Date Revised 21.08.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce the hierarchical Markov aspect model (HMAM), a computationally efficient graphical model for densely labeling large remote sensing images with their underlying terrain classes. HMAM resolves local ambiguities efficiently by combining the benefits of quadtree representations and aspect models-the former incorporate multiscale visual features and hierarchical smoothing to provide improved local label consistency, while the latter sharpen the labelings by focusing them on the classes that are most relevant for the broader local image context. The full HMAM model takes a grid of local hierarchical Markov quadtrees over image patches and augments it by incorporating a probabilistic latent semantic analysis aspect model over a larger local image tile at each level of the quadtree forest. Bag-of-word visual features are extracted for each level and patch, and given these, the parent-child transition probabilities from the quadtree and the label probabilities from the tile-level aspect models, an efficient forwards-backwards inference pass allows local posteriors for the class labels to be obtained for each patch. Variational expectation-maximization is then used to train the complete model from either pixel-level or tile-keyword-level labelings. Experiments on a complete TerraSAR-X synthetic aperture radar terrain map with pixel-level ground truth show that HMAM is both accurate and efficient, providing significantly better results than comparable single-scale aspect models with only a modest increase in training and test complexity. Keyword-level training greatly reduces the cost of providing training data with little loss of accuracy relative to pixel-level training 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dai, Dengxin  |e verfasserin  |4 aut 
700 1 |a Triggs, Bill  |e verfasserin  |4 aut 
700 1 |a Xia, Gui-Song  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 9 vom: 07. Sept., Seite 4232-43  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:9  |g day:07  |g month:09  |g pages:4232-43 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2199127  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 9  |b 07  |c 09  |h 4232-43