Cryo-tolerance of zygotic embryos from recalcitrant seeds in relation to oxidative stress--a case study on two amaryllid species

Copyright © 2012 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 169(2012), 10 vom: 01. Juli, Seite 999-1011
1. Verfasser: Sershen (VerfasserIn)
Weitere Verfasser: Varghese, Boby, Pammenter, N W, Berjak, Patricia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Water 059QF0KO0R Superoxides 11062-77-4 Ascorbate Peroxidases EC 1.11.1.11 Catalase EC 1.11.1.6 Superoxide Dismutase mehr... EC 1.15.1.1 Glutathione Reductase EC 1.8.1.7
LEADER 01000naa a22002652 4500
001 NLM217846084
003 DE-627
005 20231224035019.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2012.02.016  |2 doi 
028 5 2 |a pubmed24n0726.xml 
035 |a (DE-627)NLM217846084 
035 |a (NLM)22591858 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sershen  |e verfasserin  |4 aut 
245 1 0 |a Cryo-tolerance of zygotic embryos from recalcitrant seeds in relation to oxidative stress--a case study on two amaryllid species 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.11.2012 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2012 Elsevier GmbH. All rights reserved. 
520 |a Oxidative stress is a major component of cryoinjury in plant tissues. This study investigated the ability of recalcitrant (i.e. desiccation sensitive) Amaryllis belladonna L. and Haemanthus montanus Baker zygotic embryos to survive cryopreservation, in relation to oxidative stress. The study also investigated whether glycerol cryoprotection promoted embryo post-cryo survival by protecting enzymic antioxidant activities. Zygotic embryos excised from hydrated stored seeds were subjected to various combinations of rapid dehydration (to < or >0.4 g g⁻¹ [dmb]), cryoprotection (with sucrose or glycerol), and cooling (either rapidly or slowly), and were thereafter assessed for viability, extracellular superoxide (·O₂⁻) production, lipid peroxidation (TBARS) and antioxidant enzyme activities. Short-term hydrated storage of whole seeds was accompanied by ·O₂⁻ production and lipid peroxidation, but ·O₂⁻ levels were lower than in dehydrated and cooled embryos and viability was 100%, possibly associated with the high activities of certain antioxidant enzymes. Partial dehydration and cryoprotection (in H. montanus only) increased ·O₂⁻ production (especially in cryoprotected-dried embryos) and was associated with some viability loss, but this was not correlated with enhanced lipid peroxidation. Cooling was generally accompanied by the greatest increase in ·O₂⁻ production, and with a decline in viability. In A. belladonna only, post-cryo TBARS levels were generally higher than for fresh and pre-conditioned embryos. Partial dehydration and cooling decreased antioxidant activities, but these were consistently less severe in glycerol cryoprotected-dried, as opposed to non-cryoprotected-dried embryos. Post-cryo viability retention for glycerol cryoprotected-dried embryos was significantly higher than for non-cryoprotected-dried embryos, possibly facilitated by relatively low post-drying TBARS levels and high post-drying and post-rewarming activities of some antioxidant enzymes in the former. Pre-conditioning treatments such as glycerol cryoprotection, when used in combination with partial drying, may enhance post-cryo viability retention in recalcitrant zygotic embryos by protecting the activities of certain antioxidant enzymes during pre-conditioning for, and after retrieval from, cryostorage 
650 4 |a Journal Article 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Superoxides  |2 NLM 
650 7 |a 11062-77-4  |2 NLM 
650 7 |a Ascorbate Peroxidases  |2 NLM 
650 7 |a EC 1.11.1.11  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Glutathione Reductase  |2 NLM 
650 7 |a EC 1.8.1.7  |2 NLM 
700 1 |a Varghese, Boby  |e verfasserin  |4 aut 
700 1 |a Pammenter, N W  |e verfasserin  |4 aut 
700 1 |a Berjak, Patricia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 169(2012), 10 vom: 01. Juli, Seite 999-1011  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:169  |g year:2012  |g number:10  |g day:01  |g month:07  |g pages:999-1011 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2012.02.016  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 169  |j 2012  |e 10  |b 01  |c 07  |h 999-1011