Direct synthesis of cup-stacked carbon nanofiber microspheres by the catalytic pyrolysis of poly(ethylene glycol)
Uniformly sized microspheres tangled with cup-stacked carbon nanofibers (CSCNFs) were directly synthesized by the pyrolysis of poly(ethylene glycol) (PEG) with a nickel catalyst. A PEG/Ni membrane was prepared on a silicon wafer surface by heating it to 750 °C at a heating rate of 15 °C min(-1). The...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 23 vom: 12. Juni, Seite 8760-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Uniformly sized microspheres tangled with cup-stacked carbon nanofibers (CSCNFs) were directly synthesized by the pyrolysis of poly(ethylene glycol) (PEG) with a nickel catalyst. A PEG/Ni membrane was prepared on a silicon wafer surface by heating it to 750 °C at a heating rate of 15 °C min(-1). The wafer was heated to a temperature of 400 °C and was held at that temperature for 1 h before raising the temperature to 750 °C for 10 min to form the CSCNF microspheres. The final CSCNF microspheres and the intermediates were evaluated using scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, and Raman spectroscopy to elucidate the growth mechanism. Furthermore, the CSCNF microspheres were successfully dispersed and maintained their spherical shape in an aqueous solution containing 0.5% Nafion. The CSCNF microspheres have the potential to work as a sophisticated carrier with high adsorption and fast electron-transfer exchange properties based on the graphene edges of the nanofiber surface |
---|---|
Beschreibung: | Date Completed 04.10.2012 Date Revised 12.06.2012 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la3010745 |