|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM217782809 |
003 |
DE-627 |
005 |
20231224034855.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2013 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0726.xml
|
035 |
|
|
|a (DE-627)NLM217782809
|
035 |
|
|
|a (NLM)22585098
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Fei
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A framework for mining signatures from event sequences and its applications in healthcare data
|
264 |
|
1 |
|c 2013
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.08.2013
|
500 |
|
|
|a Date Revised 01.04.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Lee, Noah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Jianying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Jimeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ebadollahi, Shahram
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Laine, Andrew F
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 35(2013), 2 vom: 15. Feb., Seite 272-85
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2013
|g number:2
|g day:15
|g month:02
|g pages:272-85
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2013
|e 2
|b 15
|c 02
|h 272-85
|