A framework for mining signatures from event sequences and its applications in healthcare data

This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 2 vom: 15. Feb., Seite 272-85
1. Verfasser: Wang, Fei (VerfasserIn)
Weitere Verfasser: Lee, Noah, Hu, Jianying, Sun, Jimeng, Ebadollahi, Shahram, Laine, Andrew F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM217782809
003 DE-627
005 20231224034855.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0726.xml 
035 |a (DE-627)NLM217782809 
035 |a (NLM)22585098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Fei  |e verfasserin  |4 aut 
245 1 2 |a A framework for mining signatures from event sequences and its applications in healthcare data 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.08.2013 
500 |a Date Revised 01.04.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lee, Noah  |e verfasserin  |4 aut 
700 1 |a Hu, Jianying  |e verfasserin  |4 aut 
700 1 |a Sun, Jimeng  |e verfasserin  |4 aut 
700 1 |a Ebadollahi, Shahram  |e verfasserin  |4 aut 
700 1 |a Laine, Andrew F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 2 vom: 15. Feb., Seite 272-85  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:2  |g day:15  |g month:02  |g pages:272-85 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 2  |b 15  |c 02  |h 272-85