Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry
Lipid vesicles have been used as model cell systems, in which an in-vitro transcription-translation system (IVTT) is encapsulated to carry out intravesicular protein synthesis. Despite a large number of previous studies, a quantitative understanding of how protein synthesis inside the vesicles is af...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 22 vom: 05. Juni, Seite 8426-32 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Phosphatidylcholines Unilamellar Liposomes Green Fluorescent Proteins 147336-22-9 Cholesterol 97C5T2UQ7J |
Zusammenfassung: | Lipid vesicles have been used as model cell systems, in which an in-vitro transcription-translation system (IVTT) is encapsulated to carry out intravesicular protein synthesis. Despite a large number of previous studies, a quantitative understanding of how protein synthesis inside the vesicles is affected by the lipid membrane remains elusive. This is mainly because of the heterogeneity in structural properties of the lipid vesicles used in the experiments. We investigated the effects of the phospholipid membrane on green fluorescent protein (GFP) synthesis occurring inside cell-sized giant unilamellar vesicles (GUV), which have a defined quantity of lipids relative to the reaction volume. We first developed a method to distinguish GUV from multilamellar vesicles using flow cytometry (FCM). Using this method, we investigated the time course of GFP synthesis using one of the IVTT, the PURE system, and found that phospholipid in the form of GUV has little effect on GFP synthesis based on three lines of investigation. (1) GFP synthesis inside the GUV was not dependent on the size of GUV (2) or on the fraction of cholesterol or anionic phospholipid constituting the GUV, and (3) GFP synthesis proceeded similarly in GUV and in the test tube. The present results suggest that GUV provides an ideal reaction environment that does not affect the internal biochemical reaction. On the other hand, we also found that internal GFP synthesis is strongly dependent on the chemical composition of the outer solution |
---|---|
Beschreibung: | Date Completed 06.09.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la3001703 |