Facial expression recognition in perceptual color space

This paper introduces a tensor perceptual color framework (TPCF) for facial expression recognition (FER), which is based on information contained in color facial images. The TPCF enables multi-linear image analysis in different color spaces and demonstrates that color components provide additional i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 8 vom: 29. Aug., Seite 3721-33
1. Verfasser: Lajevardi, Seyed Mehdi (VerfasserIn)
Weitere Verfasser: Wu, Hong Ren
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper introduces a tensor perceptual color framework (TPCF) for facial expression recognition (FER), which is based on information contained in color facial images. The TPCF enables multi-linear image analysis in different color spaces and demonstrates that color components provide additional information for robust FER. Using this framework, the components (in either RGB, YCbCr, CIELab or CIELuv space) of color images are unfolded to two-dimensional (2- D) tensors based on multi-linear algebra and tensor concepts, from which the features are extracted by Log-Gabor filters. The mutual information quotient (MIQ) method is employed for feature selection. These features are classified using a multi-class linear discriminant analysis (LDA) classifier. The effectiveness of color information on FER using low-resolution and facial expression images with illumination variations is assessed for performance evaluation. Experimental results demonstrate that color information has significant potential to improve emotion recognition performance due to the complementary characteristics of image textures. Furthermore, the perceptual color spaces (CIELab and CIELuv) are better overall for facial expression recognition than other color spaces by providing more efficient and robust performance for facial expression recognition using facial images with illumination variation
Beschreibung:Date Completed 07.04.2014
Date Revised 06.09.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2012.2197628