Human activity as a manifold valued random process

Most of previous shape based human activity models were built with either a linear assumption or an extrinsic interpretation of the nonlinear geometry of the shape space, both of which proved to be problematic on account of the nonlinear intrinsic geometry of the associated shape spaces. In this pap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 8 vom: 07. Aug., Seite 3416-28
1. Verfasser: Yi, Sheng (VerfasserIn)
Weitere Verfasser: Krim, Hamid, Norris, Larry K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM217569625
003 DE-627
005 20231224034356.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2197008  |2 doi 
028 5 2 |a pubmed24n0725.xml 
035 |a (DE-627)NLM217569625 
035 |a (NLM)22562756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yi, Sheng  |e verfasserin  |4 aut 
245 1 0 |a Human activity as a manifold valued random process 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2014 
500 |a Date Revised 06.09.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Most of previous shape based human activity models were built with either a linear assumption or an extrinsic interpretation of the nonlinear geometry of the shape space, both of which proved to be problematic on account of the nonlinear intrinsic geometry of the associated shape spaces. In this paper we propose an intrinsic stochastic modeling of human activity on a shape manifold. More importantly, within an elegant and theoretically sound framework, our work effectively bridges the nonlinear modeling of human activity on a nonlinear space, with the classic stochastic modeling in a Euclidean space, and thereby provides a foundation for a more effective and accurate analysis of the nonlinear feature space of activity models. From a video sequence, human activity is extracted as a sequence of shapes. Such a sequence is considered as one realization of a random process on a shape manifold. Different activities are then modeled as manifold valued random processes with different distributions. To address the problem of stochastic modeling on a manifold, we first construct a nonlinear invertible map of a manifold valued process to a Euclidean process. The resulting process is then modeled as a global or piecewise Brownian motion. The mapping from a manifold to a Euclidean space is known as a stochastic development. The advantage of such a technique is that it yields a one-one correspondence, and the resulting Euclidean process intrinsically captures the curvature on the original manifold. The proposed algorithm is validated on two activity databases [15], [5] and compared with the related works on each of these. The substantiating results demonstrate the viability and high accuracy of our modeling technique in characterizing and classifying different activities 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Krim, Hamid  |e verfasserin  |4 aut 
700 1 |a Norris, Larry K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 8 vom: 07. Aug., Seite 3416-28  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:8  |g day:07  |g month:08  |g pages:3416-28 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2197008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 8  |b 07  |c 08  |h 3416-28