Tree-structured CRF models for interactive image labeling

We propose structured prediction models for image labeling that explicitly take into account dependencies among image labels. In our tree-structured models, image labels are nodes, and edges encode dependency relations. To allow for more complex dependencies, we combine labels in a single node and u...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 2 vom: 30. Feb., Seite 476-89
Auteur principal: Mensink, Thomas (Auteur)
Autres auteurs: Verbeek, Jakob, Csurka, Gabriela
Format: Article en ligne
Langue:English
Publié: 2013
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM217423450
003 DE-627
005 20250213224843.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0724.xml 
035 |a (DE-627)NLM217423450 
035 |a (NLM)22547428 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mensink, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Tree-structured CRF models for interactive image labeling 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.08.2013 
500 |a Date Revised 01.04.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose structured prediction models for image labeling that explicitly take into account dependencies among image labels. In our tree-structured models, image labels are nodes, and edges encode dependency relations. To allow for more complex dependencies, we combine labels in a single node and use mixtures of trees. Our models are more expressive than independent predictors, and lead to more accurate label predictions. The gain becomes more significant in an interactive scenario where a user provides the value of some of the image labels at test time. Such an interactive scenario offers an interesting tradeoff between label accuracy and manual labeling effort. The structured models are used to decide which labels should be set by the user, and transfer the user input to more accurate predictions on other image labels. We also apply our models to attribute-based image classification, where attribute predictions of a test image are mapped to class probabilities by means of a given attribute-class mapping. Experimental results on three publicly available benchmark datasets show that in all scenarios our structured models lead to more accurate predictions, and leverage user input much more effectively than state-of-the-art independent models 
650 4 |a Journal Article 
700 1 |a Verbeek, Jakob  |e verfasserin  |4 aut 
700 1 |a Csurka, Gabriela  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 2 vom: 30. Feb., Seite 476-89  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:35  |g year:2013  |g number:2  |g day:30  |g month:02  |g pages:476-89 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 2  |b 30  |c 02  |h 476-89