Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 188-189(2012) vom: 11. Juni, Seite 102-10
1. Verfasser: Ryan, S M (VerfasserIn)
Weitere Verfasser: Cane, K A, DeBoer, K D, Sinclair, S J, Brimblecombe, R, Hamill, J D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acetates Alkaloids Cyclopentanes Oxylipins Plant Growth Regulators Plant Proteins methyl jasmonate 900N171A0F mehr... Pentosyltransferases EC 2.4.2.- Nicotinate-Nucleotide Diphosphorylase (Carboxylating) EC 2.4.2.19
LEADER 01000caa a22002652 4500
001 NLM217213286
003 DE-627
005 20250213220323.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2012.02.008  |2 doi 
028 5 2 |a pubmed25n0724.xml 
035 |a (DE-627)NLM217213286 
035 |a (NLM)22525250 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ryan, S M  |e verfasserin  |4 aut 
245 1 0 |a Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2012 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a GENBANK: AJ243436, AJ243437, AJ748262, AJ748263, AM922107, AM922108 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2012 Elsevier Ireland Ltd. All rights reserved. 
520 |a Synthesis of wound-inducible pyridine alkaloids is characteristic of species in the genus Nicotiana. The enzyme quinolinate phosphoribosyltransferase (QPT) plays a key role in facilitating the availability of precursors for alkaloid synthesis, in addition to its ubiquitous role in enabling NAD(P)(H) synthesis. In a previous study, we reported that Nicotiana tabacum L. var. NC 95 possesses a QPT RFLP pattern similar to its model paternal progenitor species, Nicotiana tomentosiformis Goodsp. Here we show that although some varieties of N. tabacum (e.g. NC 95 and LAFC 53) possess QPT genomic contributions from only its paternal progenitor species, this is not the case for many other N. tabacum varieties (e.g. Xanthi, Samsun, Petite Havana SR1 and SC 58) where genomic QPT sequences from both diploid progenitor species have been retained. We also report that QPT is encoded by duplicate genes (designated QPT1 and QPT2) not only in N. tabacum, but also its model progenitor species Nicotiana sylvestris Speg. and Comes and N. tomentosiformis as well as in the diploid species Nicotiana glauca Graham. Previous studies have demonstrated that the N. tabacum QPT2 gene encodes a functional enzyme via complementation of a nadC(-)Escherichia coli mutant. Using a similar experimental approach here, we demonstrate that the N. tabacum QPT1 gene also encodes a functional QPT protein. We observe too that QPT2 is the predominate transcript present in both alkaloid and non-alkaloid synthesising tissues in N. tabacum and that promoter regions of both QPT1 and QPT2 are able to produce GUS activity in reproductive tissues. In N. tabacum and in several other Nicotiana species tested, QPT2 transcript levels increase following wounding or methyl jasmonate treatment whilst QPT1 transcript levels remain largely unaltered by these treatments. Together with conclusions from recently published studies involving functional interaction of MYC2-bHLH and specific ERF-type and transcription factors with QPT2-promoter sequences from N. tabacum, our results suggest that whilst both members of the QPT gene family can contribute to the transcript pool in both alkaloid producing and non-producing tissues, it is QPT2 that is regulated in association with inducible defensive pyridine alkaloid synthesis in species across the genus Nicotiana 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Acetates  |2 NLM 
650 7 |a Alkaloids  |2 NLM 
650 7 |a Cyclopentanes  |2 NLM 
650 7 |a Oxylipins  |2 NLM 
650 7 |a Plant Growth Regulators  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a methyl jasmonate  |2 NLM 
650 7 |a 900N171A0F  |2 NLM 
650 7 |a Pentosyltransferases  |2 NLM 
650 7 |a EC 2.4.2.-  |2 NLM 
650 7 |a Nicotinate-Nucleotide Diphosphorylase (Carboxylating)  |2 NLM 
650 7 |a EC 2.4.2.19  |2 NLM 
700 1 |a Cane, K A  |e verfasserin  |4 aut 
700 1 |a DeBoer, K D  |e verfasserin  |4 aut 
700 1 |a Sinclair, S J  |e verfasserin  |4 aut 
700 1 |a Brimblecombe, R  |e verfasserin  |4 aut 
700 1 |a Hamill, J D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 188-189(2012) vom: 11. Juni, Seite 102-10  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnns 
773 1 8 |g volume:188-189  |g year:2012  |g day:11  |g month:06  |g pages:102-10 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2012.02.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 188-189  |j 2012  |b 11  |c 06  |h 102-10