Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells

The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 20 vom: 22. Mai, Seite 7598-613
1. Verfasser: Graf, Christina (VerfasserIn)
Weitere Verfasser: Gao, Qi, Schütz, Irene, Noufele, Christelle Njiki, Ruan, Wentao, Posselt, Uta, Korotianskiy, Elena, Nordmeyer, Daniel, Rancan, Fiorenza, Hadam, Sabrina, Vogt, Annika, Lademann, Jürgen, Haucke, Volker, Rühl, Eckart
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amino Acids Buffers Colloids Silanes Water 059QF0KO0R Silicon Dioxide 7631-86-9
LEADER 01000naa a22002652 4500
001 NLM217205801
003 DE-627
005 20231224033532.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la204913t  |2 doi 
028 5 2 |a pubmed24n0724.xml 
035 |a (DE-627)NLM217205801 
035 |a (NLM)22524440 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Graf, Christina  |e verfasserin  |4 aut 
245 1 0 |a Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.09.2012 
500 |a Date Revised 21.11.2013 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-terminated alkoxysilanes to adjust the zeta potential from highly negative to positive values in ethanol. A transfer of the particles into water, physiological buffers, and cell culture media reduces the absolute value of the zeta potential and changes the colloidal stability. Particles stabilized by L-arginine, L-lysine, and amino silanes with short alkyl chains are only moderately stable in water and partially in PBS or TRIS buffer, but aggregate in cell culture media. Nonfunctionalized, N-(6-aminohexyl)-3-aminopropyltrimethoxy silane (AHAPS), and PEG-functionalized particles are stable in all media under study. The high colloidal stability of positively charged AHAPS-functionalized particles scales with the ionic strength of the media, indicating a mainly electrostatical stabilization. PEG-functionalized particles show, independently from the ionic strength, no or only minor aggregation due to additional steric stabilization. AHAPS stabilized particles are readily taken up by HeLa cells, likely as the positive zeta potential enhances the association with the negatively charged cell membrane. Positively charged particles stabilized by short alkyl chain aminosilanes adsorb on the cell membrane, but are weakly taken up, since aggregation inhibits their transport. Nonfunctionalized particles are barely taken up and PEG-stabilized particles are not taken up at all into HeLa cells, despite their high colloidal stability. The results indicate that a high colloidal stability of nanoparticles combined with an initial charge-driven adsorption on the cell membrane is essential for efficient cellular uptake 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Buffers  |2 NLM 
650 7 |a Colloids  |2 NLM 
650 7 |a Silanes  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Silicon Dioxide  |2 NLM 
650 7 |a 7631-86-9  |2 NLM 
700 1 |a Gao, Qi  |e verfasserin  |4 aut 
700 1 |a Schütz, Irene  |e verfasserin  |4 aut 
700 1 |a Noufele, Christelle Njiki  |e verfasserin  |4 aut 
700 1 |a Ruan, Wentao  |e verfasserin  |4 aut 
700 1 |a Posselt, Uta  |e verfasserin  |4 aut 
700 1 |a Korotianskiy, Elena  |e verfasserin  |4 aut 
700 1 |a Nordmeyer, Daniel  |e verfasserin  |4 aut 
700 1 |a Rancan, Fiorenza  |e verfasserin  |4 aut 
700 1 |a Hadam, Sabrina  |e verfasserin  |4 aut 
700 1 |a Vogt, Annika  |e verfasserin  |4 aut 
700 1 |a Lademann, Jürgen  |e verfasserin  |4 aut 
700 1 |a Haucke, Volker  |e verfasserin  |4 aut 
700 1 |a Rühl, Eckart  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 20 vom: 22. Mai, Seite 7598-613  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:20  |g day:22  |g month:05  |g pages:7598-613 
856 4 0 |u http://dx.doi.org/10.1021/la204913t  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 20  |b 22  |c 05  |h 7598-613