|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM217188516 |
003 |
DE-627 |
005 |
20250213215820.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.22984
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0724.xml
|
035 |
|
|
|a (DE-627)NLM217188516
|
035 |
|
|
|a (NLM)22522665
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sindhikara, Daniel J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Placevent
|b an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.09.2012
|
500 |
|
|
|a Date Revised 16.11.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2012 Wiley Periodicals, Inc.
|
520 |
|
|
|a We have created a simple algorithm for automatically predicting the explicit solvent atom distribution of biomolecules. The explicit distribution is coerced from the three-dimensional (3D) continuous distribution resulting from a 3D reference interaction site model (3D-RISM) calculation. This procedure predicts optimal location of solvent molecules and ions given a rigid biomolecular structure and the solvent composition. We show examples of predicting water molecules near the KNI-272 bound form of HIV-1 protease and predicting both sodium ions and water molecules near the rotor ring of F-adenosine triphosphate (ATP) synthase. Our results give excellent agreement with experimental structure with an average prediction error of 0.39-0.65 Å. Further, unlike experimental methods, this method does not suffer from the partial occupancy limit. Our method can be performed directly on 3D-RISM output within minutes. It is extremely useful for examining multiple specific solvent-solute interactions, as a convenient method for generating initial solvent structures for molecular dynamics calculations, and may assist in refinement of experimental structures. © 2012 Wiley Periodicals, Inc
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Oligopeptides
|2 NLM
|
650 |
|
7 |
|a Solvents
|2 NLM
|
650 |
|
7 |
|a HIV Protease
|2 NLM
|
650 |
|
7 |
|a EC 3.4.23.-
|2 NLM
|
650 |
|
7 |
|a Proton-Translocating ATPases
|2 NLM
|
650 |
|
7 |
|a EC 3.6.3.14
|2 NLM
|
650 |
|
7 |
|a kynostatin 272
|2 NLM
|
650 |
|
7 |
|a MUL0OE3YBF
|2 NLM
|
700 |
1 |
|
|a Yoshida, Norio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hirata, Fumio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 33(2012), 18 vom: 05. Juli, Seite 1536-43
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2012
|g number:18
|g day:05
|g month:07
|g pages:1536-43
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.22984
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2012
|e 18
|b 05
|c 07
|h 1536-43
|