3-d motion estimation, understanding, and prediction from noisy image sequences

This paper presents an approach to understanding general 3-D motion of a rigid body from image sequences. Based on dynamics, a locally constant angular momentum (LCAM) model is introduced. The model is local in the sense that it is applied to a limited number of image frames at a time. Specifically,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 9(1987), 3 vom: 11. März, Seite 370-89
1. Verfasser: Weng, J (VerfasserIn)
Weitere Verfasser: Huang, T S, Ahuja, N
Format: Aufsatz
Sprache:English
Veröffentlicht: 1987
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM217135277
003 DE-627
005 20231224033352.0
007 tu
008 231224s1987 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0723.xml 
035 |a (DE-627)NLM217135277 
035 |a (NLM)22516631 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weng, J  |e verfasserin  |4 aut 
245 1 0 |a 3-d motion estimation, understanding, and prediction from noisy image sequences 
264 1 |c 1987 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 12.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents an approach to understanding general 3-D motion of a rigid body from image sequences. Based on dynamics, a locally constant angular momentum (LCAM) model is introduced. The model is local in the sense that it is applied to a limited number of image frames at a time. Specifically, the model constrains the motion, over a local frame subsequence, to be a superposition of precession and translation. Thus, the instantaneous rotation axis of the object is allowed to change through the subsequence. The trajectory of the rotation center is approximated by a vector polynomial. The parameters of the model evolve in time so that they can adapt to long term changes in motion characteristics. The nature and parameters of short term motion can be estimated continuously with the goal of understanding motion through the image sequence. The estimation algorithm presented in this paper is linear, i.e., the algorithm consists of solving simultaneous linear equations. Based on the assumption that the motion is smooth, object positions and motion in the near future can be predicted, and short missing subsequences can be recovered. Noise smoothing is achieved by overdetermination and a leastsquares criterion. The framework is flexible in the sense that it allows both overdetermination in number of feature points and the number of image frames 
650 4 |a Journal Article 
700 1 |a Huang, T S  |e verfasserin  |4 aut 
700 1 |a Ahuja, N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 9(1987), 3 vom: 11. März, Seite 370-89  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:9  |g year:1987  |g number:3  |g day:11  |g month:03  |g pages:370-89 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 1987  |e 3  |b 11  |c 03  |h 370-89