Association mapping in forest trees and fruit crops

Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes adva...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 63(2012), 11 vom: 01. Juni, Seite 4045-60
1. Verfasser: Khan, M Awais (VerfasserIn)
Weitere Verfasser: Korban, Schuyler S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Review Plant Proteins
Beschreibung
Zusammenfassung:Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed
Beschreibung:Date Completed 19.11.2012
Date Revised 18.07.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ers105