Transient convection, diffusion, and adsorption in surface-based biosensors

This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other mic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 19 vom: 15. Mai, Seite 7557-63
1. Verfasser: Hansen, Rasmus (VerfasserIn)
Weitere Verfasser: Bruus, Henrik, Callisen, Thomas H, Hassager, Ole
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM217071414
003 DE-627
005 20231224033224.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la3000763  |2 doi 
028 5 2 |a pubmed24n0723.xml 
035 |a (DE-627)NLM217071414 
035 |a (NLM)22509887 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hansen, Rasmus  |e verfasserin  |4 aut 
245 1 0 |a Transient convection, diffusion, and adsorption in surface-based biosensors 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2012 
500 |a Date Revised 15.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional adsorption coefficient (Biot number), the nondimensional flow rate (Péclet number), and the model geometry. Transient dynamics is investigated, and we quantify the error of using the quasi-steady-state assumption for experimental data fitting in both kinetically limited and convection-diffusion-limited regimes for irreversible adsorption, in specific. The results clarify the conditions under which the quasi-steady theory is reliable or not. In extension to the well-known fact that the range of validity is altered under convection-diffusion-limited conditions, we show how also the ratio of the inlet concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants 
650 4 |a Journal Article 
700 1 |a Bruus, Henrik  |e verfasserin  |4 aut 
700 1 |a Callisen, Thomas H  |e verfasserin  |4 aut 
700 1 |a Hassager, Ole  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 19 vom: 15. Mai, Seite 7557-63  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:19  |g day:15  |g month:05  |g pages:7557-63 
856 4 0 |u http://dx.doi.org/10.1021/la3000763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 19  |b 15  |c 05  |h 7557-63