Dielectrophoretic growth of platinum nanowires : concentration and temperature dependence of the growth velocity

The growth velocity of platinum nanowires in an aqueous solution of K(2)PtCl(4) is investigated as a function of the metal complex concentration and temperature. The solution is specially prepared to provide mainly the neutral complex cis-[PtCl(2)(H(2)O)(2)] for growing nanowires by dielectrophoresi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 19 vom: 15. Mai, Seite 7498-504
1. Verfasser: Nerowski, A (VerfasserIn)
Weitere Verfasser: Poetschke, M, Bobeth, M, Opitz, J, Cuniberti, G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Platinum 49DFR088MY
Beschreibung
Zusammenfassung:The growth velocity of platinum nanowires in an aqueous solution of K(2)PtCl(4) is investigated as a function of the metal complex concentration and temperature. The solution is specially prepared to provide mainly the neutral complex cis-[PtCl(2)(H(2)O)(2)] for growing nanowires by dielectrophoresis. The measured growth velocities indicate diffusion-limited nanowire growth at low concentration and high temperature in qualitative agreement with a theoretical analysis that includes the diffusion of metal complexes and the dielectrophoretic force on the complexes. At concentrations greater than 100 μM and low temperature, different behavior is observed, suggesting the growth rate to be limited by the deposition reaction of platinum at the nanowire tip. The enhancement of the K(+) concentration is found to support nanowire growth. Possible reasons for a rate limitation and for the difference between observed and calculated nanowire growth velocities are discussed
Beschreibung:Date Completed 07.09.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la300302n