High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell

With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 45(2012), Pt 2 vom: 01. Apr., Seite 213-223
1. Verfasser: Nielsen, S S (VerfasserIn)
Weitere Verfasser: Møller, M, Gillilan, R E
Format: Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM217063462
003 DE-627
005 20240323232221.0
007 tu
008 231224s2012 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1342.xml 
035 |a (DE-627)NLM217063462 
035 |a (NLM)22509071 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nielsen, S S  |e verfasserin  |4 aut 
245 1 0 |a High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 23.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods 
650 4 |a Journal Article 
700 1 |a Møller, M  |e verfasserin  |4 aut 
700 1 |a Gillilan, R E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 45(2012), Pt 2 vom: 01. Apr., Seite 213-223  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:45  |g year:2012  |g number:Pt 2  |g day:01  |g month:04  |g pages:213-223 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2012  |e Pt 2  |b 01  |c 04  |h 213-223