Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells

The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 19 vom: 15. Mai, Seite 7542-50
1. Verfasser: Zhang, Lipeng (VerfasserIn)
Weitere Verfasser: Niu, Jianbing, Dai, Liming, Xia, Zhenhai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM216890683
003 DE-627
005 20231224032817.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1021/la2043262  |2 doi 
028 5 2 |a pubmed24n0723.xml 
035 |a (DE-627)NLM216890683 
035 |a (NLM)22489601 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lipeng  |e verfasserin  |4 aut 
245 1 0 |a Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2012 
500 |a Date Revised 15.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant nonmetal catalysts to replace platinum. Here, we present a first-principles study of ORR on nitrogen-doped graphene in acidic environment. We demonstrate that the ORR activity primarily correlates to charge and spin densities of the graphene. The nitrogen doping and defects introduce high positive spin and/or charge densities that facilitate the ORR on graphene surface. The identified active sites are closely related to doping cluster size and dopant-defect interactions. Generally speaking, a large doping cluster size (number of N atoms >2) reduces the number of catalytic active sites per N atom. In combination with N clustering, Stone-Wales defects can strongly promote ORR. For four-electron transfer, the effective reversible potential ranges from 1.04 to 1.15 V/SHE, depending on the defects and cluster size. The catalytic properties of graphene could be optimized by introducing small N clusters in combination with material defects 
650 4 |a Journal Article 
700 1 |a Niu, Jianbing  |e verfasserin  |4 aut 
700 1 |a Dai, Liming  |e verfasserin  |4 aut 
700 1 |a Xia, Zhenhai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 28(2012), 19 vom: 15. Mai, Seite 7542-50  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:28  |g year:2012  |g number:19  |g day:15  |g month:05  |g pages:7542-50 
856 4 0 |u http://dx.doi.org/10.1021/la2043262  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 28  |j 2012  |e 19  |b 15  |c 05  |h 7542-50