Recurring competitive reactions : desorption of methane and molecular hydrogen from Cu(001)

Methane and molecular hydrogen desorption from a methyl and hydrogen exposed Cu(001) surface is investigated. Both gaseous products are observed nearly simultaneously within two temperature regimes separated by more than 100 K. The lower temperature desorption, at ∼325 K, is believed to result from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 20 vom: 22. Mai, Seite 7704-10
1. Verfasser: Lallo, J (VerfasserIn)
Weitere Verfasser: Hinch, B J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Methane and molecular hydrogen desorption from a methyl and hydrogen exposed Cu(001) surface is investigated. Both gaseous products are observed nearly simultaneously within two temperature regimes separated by more than 100 K. The lower temperature desorption, at ∼325 K, is believed to result from two processes which compete for adsorbed atomic hydrogen: methyl reduction and associative hydrogen desorption. The higher-temperature competitive desorption is initiated after the onset of thermal decomposition of remaining methyl species, at ∼420 K. Kinetic simulations of the two presumed competing reactions are used to show observable and comparable methane and hydrogen evolution can occur in two temperature regimes, only with a precise balance of kinetic parameters, but fail to accurately reproduce the observed small differences in CH(4) and H(2) peak desorption temperatures. It is concluded that either the utilized desorption kinetics are inaccurate at low H((a)) coverages or rapid desorption, or the same reactions are not competitive at higher temperatures and an alternative active mechanism for product evolution must exist
Beschreibung:Date Completed 28.09.2012
Date Revised 19.07.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la3003756