Benchmarking the thermodynamic analysis of water molecules around a model beta sheet

Copyright © 2012 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 33(2012), 15 vom: 05. Juni, Seite 1383-92
1. Verfasser: Huggins, David J (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM21657689X
003 DE-627
005 20240610232508.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.22971  |2 doi 
028 5 2 |a pubmed24n1435.xml 
035 |a (DE-627)NLM21657689X 
035 |a (NLM)22457119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huggins, David J  |e verfasserin  |4 aut 
245 1 0 |a Benchmarking the thermodynamic analysis of water molecules around a model beta sheet 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.09.2012 
500 |a Date Revised 10.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2012 Wiley Periodicals, Inc. 
520 |a Water molecules play a vital role in biological and engineered systems by controlling intermolecular interactions in the aqueous phase. Inhomogeneous fluid solvation theory provides a method to quantify solvent thermodynamics from molecular dynamics or Monte Carlo simulations and provides an insight into intermolecular interactions. In this study, simulations of TIP4P-2005 and TIP5P-Ewald water molecules around a model beta sheet are used to investigate the orientational correlations and predicted thermodynamic properties of water molecules at a protein surface. This allows the method to be benchmarked and provides information about the effect of a protein on the thermodynamics of nearby water molecules. The results show that the enthalpy converges with relatively little sampling, but the entropy and thus the free energy require considerably more sampling to converge. The two water models yield a very similar pattern of hydration sites, and these hydration sites have very similar thermodynamic properties, despite notable differences in their orientational preferences. The results also predict that a protein surface affects the free energy of water molecules to a distance of approximately 4.0 Å, which is in line with previous work. In addition, all hydration sites have a favorable free energy with respect to bulk water, but only when the water-water entropy term is included. A new technique for calculating this term is presented and its use is expected to be very important in accurately calculating solvent thermodynamics for quantitative application 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 33(2012), 15 vom: 05. Juni, Seite 1383-92  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:33  |g year:2012  |g number:15  |g day:05  |g month:06  |g pages:1383-92 
856 4 0 |u http://dx.doi.org/10.1002/jcc.22971  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2012  |e 15  |b 05  |c 06  |h 1383-92