Dispersions of nanocrystalline cellulose in aqueous polymer solutions : structure formation of colloidal rods

© 2012 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 14 vom: 10. Apr., Seite 6114-23
1. Verfasser: Boluk, Yaman (VerfasserIn)
Weitere Verfasser: Zhao, Liyan, Incani, Vanessa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Colloids Solutions Water 059QF0KO0R Cellulose 9004-34-6 hydroxyethylcellulose 9004-62-0 mehr... Carboxymethylcellulose Sodium K679OBS311
Beschreibung
Zusammenfassung:© 2012 American Chemical Society
The steady-state shear and linear viscoelastic deformations of semidilute suspensions of rod-shaped nanocrystalline cellulose (NCC) particles in 1.0% hydroxyethyl cellulose and carboxymethyl cellulose solutions were investigated. Addition of NCC at the onset of semidilute suspension concentration significantly altered the rheological and linear viscoelastic properties of semidilute polymer solutions. The low-shear viscosity values of polymers solutions were increased 20-490 times (depending on polymer molecular weight and functional groups) by the presence of NCC. NCC suspensions in polymer solutions exhibited yield stresses up to 7.12 Pa. Viscoelasticity measurements also showed that NCC suspended polymer solutions had higher linear elastic moduli than the loss moduli. All of those results revealed the gel formation of NCC particles and presence of internal structures. The formation of a weak gel structure was due to the nonadsorbing macromolecules which caused the depletion-induced interaction among NCC particles. A simple interaction energy model was used to show successfully the flocculation of NCC particles in the presence of nonadsorbing polymers. The model is based on the incorporation of the depletion interaction term between two parallel plates into the DLVO theory for cubic prismatic rod shaped NCC particles
Beschreibung:Date Completed 06.08.2012
Date Revised 31.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la2035449