Direct isosurface visualization of hex-based high-order geometry and attribute representations

In this paper, we present a novel isosurface visualization technique that guarantees the accurate visualization of isosurfaces with complex attribute data defined on (un)structured (curvi)linear hexahedral grids. Isosurfaces of high-order hexahedral-based finite element solutions on both uniform gri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 18(2012), 5 vom: 15. Mai, Seite 753-66
1. Verfasser: Martin, Tobias (VerfasserIn)
Weitere Verfasser: Cohen, Elaine, Kirby, Robert M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:In this paper, we present a novel isosurface visualization technique that guarantees the accurate visualization of isosurfaces with complex attribute data defined on (un)structured (curvi)linear hexahedral grids. Isosurfaces of high-order hexahedral-based finite element solutions on both uniform grids (including MRI and CT scans) and more complex geometry representing a domain of interest that can be rendered using our algorithm. Additionally, our technique can be used to directly visualize solutions and attributes in isogeometric analysis, an area based on trivariate high-order NURBS (Non-Uniform Rational B-splines) geometry and attribute representations for the analysis. Furthermore, our technique can be used to visualize isosurfaces of algebraic functions. Our approach combines subdivision and numerical root finding to form a robust and efficient isosurface visualization algorithm that does not miss surface features, while finding all intersections between a view frustum and desired isosurfaces. This allows the use of view-independent transparency in the rendering process. We demonstrate our technique through a straightforward CPU implementation on both complex-structured and complex-unstructured geometries with high-order simulation solutions, isosurfaces of medical data sets, and isosurfaces of algebraic functions
Beschreibung:Date Completed 01.10.2012
Date Revised 23.03.2012
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2011.103