Headgroup effect on silane structures at buried polymer/silane and polymer/polymer interfaces and their relations to adhesion

© 2012 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 14 vom: 10. Apr., Seite 6052-9
1. Verfasser: Zhang, Chi (VerfasserIn)
Weitere Verfasser: Shephard, Nick E, Rhodes, Susan M, Chen, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Adhesives Epoxy Compounds Polyethylene Terephthalates Silanes Silicones
Beschreibung
Zusammenfassung:© 2012 American Chemical Society
Sum frequency generation (SFG) vibrational spectroscopy was used to study the effect of silane headgroups on the molecular interactions that occur between poly(ethylene terephthalate) (PET) and various epoxy silanes at the PET/silane and PET/silicone interfaces. Three different silanes were investigated: (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-glycidoxypropyl) methyl-dimethoxysilane (γ-GPMS), and (3-glycidoxypropyl) dimethyl-methoxysilane (γ-GPDMS). These silanes share the same backbone and epoxy end group but have different headgroups. SFG was used to examine the interfaces between PET and each of these silanes, as well as silanes mixed with methylvinylsiloxanol (MVS). We also examined the interfaces between PET and uncured or cured silicone with silanes or silane-MVS mixtures. Silanes with different headgroups were found to exhibit a variety of methoxy group interfacial segregation and ordering behaviors at various interfaces. The effect of MVS was also dependent upon silane headgroup choice, and the interfacial molecular structures of silane methoxy headgroups were found to differ at PET/silane and PET/silicone interfaces. Epoxy silanes have been widely used as adhesion promoters for polymer adhesives; therefore, the molecular structures probed using SFG were correlated to adhesion testing results to understand the molecular mechanisms of silicone-polymer adhesion. Our results demonstrated that silane methoxy headgroups play important roles in adhesion at the PET/silicone interfaces. The presence of MVS can change interfacial methoxy segregation and ordering, leading to different adhesion strengths
Beschreibung:Date Completed 06.08.2012
Date Revised 10.04.2012
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la300004x