Laplacian sparse coding, Hypergraph Laplacian sparse coding, and applications

Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a L...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 35(2013), 1 vom: 07. Jan., Seite 92-104
1. Verfasser: Gao, Shenghua (VerfasserIn)
Weitere Verfasser: Tsang, Ivor Wai-Hung, Chia, Liang-Tien
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM215963938
003 DE-627
005 20250213180014.0
007 cr uuu---uuuuu
008 231224s2013 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0719.xml 
035 |a (DE-627)NLM215963938 
035 |a (NLM)22392702 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Shenghua  |e verfasserin  |4 aut 
245 1 0 |a Laplacian sparse coding, Hypergraph Laplacian sparse coding, and applications 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.07.2013 
500 |a Date Revised 05.03.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating the similarity preserving term into the objective of sparse coding, our proposed Laplacian sparse coding can alleviate the instability of sparse codes. Furthermore, we propose a Hypergraph Laplacian sparse coding (HLSc), which extends our Laplacian sparse coding to the case where the similarity among the instances defined by a hypergraph. Specifically, this HLSc captures the similarity among the instances within the same hyperedge simultaneously, and also makes the sparse codes of them be similar to each other. Both Laplacian sparse coding and Hypergraph Laplacian sparse coding enhance the robustness of sparse coding. We apply the Laplacian sparse coding to feature quantization in Bag-of-Words image representation, and it outperforms sparse coding and achieves good performance in solving the image classification problem. The Hypergraph Laplacian sparse coding is also successfully used to solve the semi-auto image tagging problem. The good performance of these applications demonstrates the effectiveness of our proposed formulations in locality and similarity preservation 
650 4 |a Journal Article 
700 1 |a Tsang, Ivor Wai-Hung  |e verfasserin  |4 aut 
700 1 |a Chia, Liang-Tien  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 35(2013), 1 vom: 07. Jan., Seite 92-104  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:1  |g day:07  |g month:01  |g pages:92-104 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 1  |b 07  |c 01  |h 92-104