A multiplicative iterative algorithm for box-constrained penalized likelihood image restoration

Image restoration is a computationally intensive problem as a large number of pixel values have to be determined. Since the pixel values of digital images can attain only a finite number of values (e.g., 8-bit images can have only 256 gray levels), one would like to recover an image within some dyna...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 7 vom: 28. Juli, Seite 3168-81
1. Verfasser: Chan, Raymond H (VerfasserIn)
Weitere Verfasser: Ma, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM215803906
003 DE-627
005 20231224030305.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2188811  |2 doi 
028 5 2 |a pubmed24n0719.xml 
035 |a (DE-627)NLM215803906 
035 |a (NLM)22374363 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chan, Raymond H  |e verfasserin  |4 aut 
245 1 2 |a A multiplicative iterative algorithm for box-constrained penalized likelihood image restoration 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.10.2012 
500 |a Date Revised 19.06.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image restoration is a computationally intensive problem as a large number of pixel values have to be determined. Since the pixel values of digital images can attain only a finite number of values (e.g., 8-bit images can have only 256 gray levels), one would like to recover an image within some dynamic range. This leads to the imposition of box constraints on the pixel values. The traditional gradient projection methods for constrained optimization can be used to impose box constraints, but they may suffer from either slow convergence or repeated searching for active sets in each iteration. In this paper, we develop a new box-constrained multiplicative iterative (BCMI) algorithm for box-constrained image restoration. The BCMI algorithm just requires pixelwise updates in each iteration, and there is no need to invert any matrices. We give the convergence proof of this algorithm and apply it to total variation image restoration problems, where the observed blurry images contain Poisson, Gaussian, or salt-and-pepper noises 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ma, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 7 vom: 28. Juli, Seite 3168-81  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:7  |g day:28  |g month:07  |g pages:3168-81 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2188811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 7  |b 28  |c 07  |h 3168-81