Binned progressive quantization for compressive sensing

Compressive sensing (CS) has been recently and enthusiastically promoted as a joint sampling and compression approach. The advantages of CS over conventional signal compression techniques are architectural: the CS encoder is made signal independent and computationally inexpensive by shifting the bul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 6 vom: 28. Juni, Seite 2980-90
1. Verfasser: Wang, Liangjun (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin, Shi, Guangming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM215803892
003 DE-627
005 20231224030305.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2188810  |2 doi 
028 5 2 |a pubmed24n0719.xml 
035 |a (DE-627)NLM215803892 
035 |a (NLM)22374362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Liangjun  |e verfasserin  |4 aut 
245 1 0 |a Binned progressive quantization for compressive sensing 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.09.2012 
500 |a Date Revised 16.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Compressive sensing (CS) has been recently and enthusiastically promoted as a joint sampling and compression approach. The advantages of CS over conventional signal compression techniques are architectural: the CS encoder is made signal independent and computationally inexpensive by shifting the bulk of system complexity to the decoder. While these properties of CS allow signal acquisition and communication in some severely resource-deprived conditions that render conventional sampling and coding impossible, they are accompanied by rather disappointing rate-distortion performance. In this paper, we propose a novel coding technique that rectifies, to a certain extent, the problem of poor compression performance of CS and, at the same time, maintains the simplicity and universality of the current CS encoder design. The main innovation is a scheme of progressive fixed-rate scalar quantization with binning that enables the CS decoder to exploit hidden correlations between CS measurements, which was overlooked in the existing literature. Experimental results are presented to demonstrate the efficacy of the new CS coding technique. Encouragingly, on some test images, the new CS technique matches or even slightly outperforms JPEG 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 6 vom: 28. Juni, Seite 2980-90  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:6  |g day:28  |g month:06  |g pages:2980-90 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2188810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 6  |b 28  |c 06  |h 2980-90