Water-soluble nanodiamond

Reduction of the graphenic edges of annealed nanodiamond by sodium in liquid ammonia leads to a nanodiamond salt that reacts with either alkyl or aryl halides by electron transfer to yield radical anions that dissociate spontaneously into free radicals and halide. The free radicals were observed to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 28(2012), 11 vom: 20. März, Seite 5243-8
1. Verfasser: Kuznetsov, Oleksandr (VerfasserIn)
Weitere Verfasser: Sun, Yanqiu, Thaner, Ryan, Bratt, Ariana, Shenoy, Varun, Wong, Michael S, Jones, John, Billups, W E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Reduction of the graphenic edges of annealed nanodiamond by sodium in liquid ammonia leads to a nanodiamond salt that reacts with either alkyl or aryl halides by electron transfer to yield radical anions that dissociate spontaneously into free radicals and halide. The free radicals were observed to add readily to the aromatic rings of the annealed nanodiamond. Nanodiamonds functionalized by phenyl radicals were sulfonated in oleum, and the resulting sulfonic acid was converted to the sodium salt by treatment with sodium hydroxide. The solubility of the salt in water was determined to be 248 mg/L. Nanodiamond functionalized by carboxylic acid groups could be prepared by reacting 5-bromovaleric acid with the annealed nanodiamond salt. The solubility of the sodium carboxylate in water was found to be 160 mg/L
Beschreibung:Date Completed 05.07.2012
Date Revised 20.03.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la204660h