A Statistical Quality Model for Data-Driven Speech Animation

In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet unsolved research problem. In this paper, we propose a novel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 18(2012), 11 vom: 21. Nov., Seite 1915-27
1. Verfasser: Ma, Xiaohan (VerfasserIn)
Weitere Verfasser: Deng, Zhigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM215573455
003 DE-627
005 20231224025802.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2012.67  |2 doi 
028 5 2 |a pubmed24n0718.xml 
035 |a (DE-627)NLM215573455 
035 |a (NLM)22350203 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Xiaohan  |e verfasserin  |4 aut 
245 1 2 |a A Statistical Quality Model for Data-Driven Speech Animation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.12.2015 
500 |a Date Revised 11.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet unsolved research problem. In this paper, we propose a novel statistical model (called SAQP) to automatically predict the quality of on-the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based, Speech Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical regression model to learn the association between the obtained SATF metric and the objective speech animation synthesis quality. Through delicately designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model. To the best of our knowledge, this work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We believe it is the important first step to remove a critical technical barrier for applying data-driven speech animation techniques to numerous online or interactive talking avatar applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Deng, Zhigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 18(2012), 11 vom: 21. Nov., Seite 1915-27  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:18  |g year:2012  |g number:11  |g day:21  |g month:11  |g pages:1915-27 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2012.67  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 18  |j 2012  |e 11  |b 21  |c 11  |h 1915-27