The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins

The cyclic nucleotide cGMP has been shown to play important roles in plant development and responses to abiotic and biotic stress. Yet much controversy remains regarding the exact role of this second messenger. Progress in unravelling cGMP function in plants was hampered by laborious and time-consum...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 63(2012), 8 vom: 07. Mai, Seite 3199-205
1. Verfasser: Isner, Jean Charles (VerfasserIn)
Weitere Verfasser: Nühse, Thomas, Maathuis, Frans J M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins Cyclopentanes Indoleacetic Acids Oxylipins Plant Growth Regulators jasmonic acid 6RI5N05OWW Abscisic Acid mehr... 72S9A8J5GW Cyclic GMP H2D2X058MU
Beschreibung
Zusammenfassung:The cyclic nucleotide cGMP has been shown to play important roles in plant development and responses to abiotic and biotic stress. Yet much controversy remains regarding the exact role of this second messenger. Progress in unravelling cGMP function in plants was hampered by laborious and time-consuming methodology to measure changes in cellular [cGMP] but the development of fluorescence-based reporters has removed this disadvantage. This study used the FlincG cGMP reporter to investigate potential interactions between phytohormone and cGMP signalling and found a rapid and significant effect of the hormones abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA) on cytoplasmic cGMP levels. In contrast, brassinosteroids and cytokinin did not evoke a cGMP signal. The effects of ABA, IAA, and JA were apparent at external concentrations in the nanomolar range with EC50 values of around 1000, 300, and 0.03 nmoles for ABA, IAA, and JA respectively. To examine potential mechanisms for how hormone-induced cGMP signals are propagated, the role of protein phosphorylation was tested. A phosphoproteomics analysis on Arabidopsis thaliana root microsomal proteins in the absence and presence of membrane-permeable cGMP showed 15 proteins that rapidly (within minutes) changed in phosphorylation status. Out of these, nine were previously shown to also alter phosphorylation status in response to plant hormones, pointing to protein phosphorylation as a target for hormone-induced cGMP signalling
Beschreibung:Date Completed 07.09.2012
Date Revised 21.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/ers045