Fast semantic diffusion for large-scale context-based image and video annotation

Exploring context information for visual recognition has recently received significant research attention. This paper proposes a novel and highly efficient approach, which is named semantic diffusion, to utilize semantic context for large-scale image and video annotation. Starting from the initial a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 6 vom: 15. Juni, Seite 3080-91
1. Verfasser: Jiang, Yu-Gang (VerfasserIn)
Weitere Verfasser: Dai, Qi, Wang, Jun, Ngo, Chong-Wah, Xue, Xiangyang, Chang, Shih-Fu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM21552392X
003 DE-627
005 20231224025709.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2188038  |2 doi 
028 5 2 |a pubmed24n0718.xml 
035 |a (DE-627)NLM21552392X 
035 |a (NLM)22345543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Yu-Gang  |e verfasserin  |4 aut 
245 1 0 |a Fast semantic diffusion for large-scale context-based image and video annotation 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.09.2012 
500 |a Date Revised 16.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Exploring context information for visual recognition has recently received significant research attention. This paper proposes a novel and highly efficient approach, which is named semantic diffusion, to utilize semantic context for large-scale image and video annotation. Starting from the initial annotation of a large number of semantic concepts (categories), obtained by either machine learning or manual tagging, the proposed approach refines the results using a graph diffusion technique, which recovers the consistency and smoothness of the annotations over a semantic graph. Different from the existing graph-based learning methods that model relations among data samples, the semantic graph captures context by treating the concepts as nodes and the concept affinities as the weights of edges. In particular, our approach is capable of simultaneously improving annotation accuracy and adapting the concept affinities to new test data. The adaptation provides a means to handle domain change between training and test data, which often occurs in practice. Extensive experiments are conducted to improve concept annotation results using Flickr images and TV program videos. Results show consistent and significant performance gain (10 +% on both image and video data sets). Source codes of the proposed algorithms are available online 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Dai, Qi  |e verfasserin  |4 aut 
700 1 |a Wang, Jun  |e verfasserin  |4 aut 
700 1 |a Ngo, Chong-Wah  |e verfasserin  |4 aut 
700 1 |a Xue, Xiangyang  |e verfasserin  |4 aut 
700 1 |a Chang, Shih-Fu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 6 vom: 15. Juni, Seite 3080-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:6  |g day:15  |g month:06  |g pages:3080-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2188038  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 6  |b 15  |c 06  |h 3080-91