|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM215415000 |
003 |
DE-627 |
005 |
20231224025506.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2012 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2012.2187528
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0718.xml
|
035 |
|
|
|a (DE-627)NLM215415000
|
035 |
|
|
|a (NLM)22334004
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Le
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Scene-oriented hierarchical classification of blurry and noisy images
|
264 |
|
1 |
|c 2012
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.08.2012
|
500 |
|
|
|a Date Revised 30.04.2012
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A system for scene-oriented hierarchical classification of blurry and noisy images is proposed. It attempts to simulate important features of the human visual perception. The underlying approach is based on three strategies: extraction of essential signatures captured from a global context, simulating the global pathway; highlight detection based on local conspicuous features of the reconstructed image, simulating the local pathway; and hierarchical classification of extracted features using probabilistic techniques. The techniques involved in hierarchical classification use input from both the local and global pathways. Visual context is exploited by a combination of Gabor filtering with the principal component analysis. In parallel, a pseudo-restoration process is applied together with an affine invariant approach to improve the accuracy in the detection of local conspicuous features. Subsequently, the local conspicuous features and the global essential signature are combined and clustered by a Monte Carlo approach. Finally, clustered features are fed to a self-organizing tree algorithm to generate the final hierarchical classification results. Selected representative results of a comprehensive experimental evaluation validate the proposed system
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Su, Jiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Izquierdo, Ebroul
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 21(2012), 5 vom: 21. Mai, Seite 2534-45
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2012
|g number:5
|g day:21
|g month:05
|g pages:2534-45
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2012.2187528
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2012
|e 5
|b 21
|c 05
|h 2534-45
|