Detecting mutual awareness events

It is quite common that multiple human observers attend to a single static interest point. This is known as a mutual awareness event (MAWE). A preferred way to monitor these situations is with a camera that captures the human observers while using existing face detection and head pose estimation alg...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 12 vom: 20. Dez., Seite 2327-40
1. Verfasser: Cohen, Meir (VerfasserIn)
Weitere Verfasser: Shimshoni, Ilan, Rivlin, Ehud, Adam, Amit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM215393813
003 DE-627
005 20231224025441.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0718.xml 
035 |a (DE-627)NLM215393813 
035 |a (NLM)22331857 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cohen, Meir  |e verfasserin  |4 aut 
245 1 0 |a Detecting mutual awareness events 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2013 
500 |a Date Revised 01.02.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a It is quite common that multiple human observers attend to a single static interest point. This is known as a mutual awareness event (MAWE). A preferred way to monitor these situations is with a camera that captures the human observers while using existing face detection and head pose estimation algorithms. The current work studies the underlying geometric constraints of MAWEs and reformulates them in terms of image measurements. The constraints are then used in a method that 1) detects whether such an interest point does exist, 2) determines where it is located, 3) identifies who was attending to it, and 4) reports where and when each observer was while attending to it. The method is also applied on another interesting event when a single moving human observer fixates on a single static interest point. The method can deal with the general case of an uncalibrated camera in a general environment. This is in contrast to other work on similar problems that inherently assumes a known environment or a calibrated camera. The method was tested on about 75 images from various scenes and robustly detects MAWEs and estimates their related attributes. Most of the images were found by searching the Internet 
650 4 |a Journal Article 
700 1 |a Shimshoni, Ilan  |e verfasserin  |4 aut 
700 1 |a Rivlin, Ehud  |e verfasserin  |4 aut 
700 1 |a Adam, Amit  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 12 vom: 20. Dez., Seite 2327-40  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:12  |g day:20  |g month:12  |g pages:2327-40 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 12  |b 20  |c 12  |h 2327-40