Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents : comparative operation of the cytochrome, alternative, and rotenone-resistant pathways

Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their ro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 63(2012), 8 vom: 13. Mai, Seite 2909-19
1. Verfasser: Peckmann, Klaus (VerfasserIn)
Weitere Verfasser: von Willert, Dieter J, Martin, Craig E, Herppich, Werner B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't Carboxylic Acids Cyanides Cytochromes Malates Pyruvates Rotenone 03L9OT429T mehr... NAD 0U46U6E8UK Manganese 42Z2K6ZL8P NADP 53-59-8 Acetyl Coenzyme A 72-89-9 malic acid 817L1N4CKP Succinic Acid AB6MNQ6J6L Malate Dehydrogenase EC 1.1.1.37 malate dehydrogenase (decarboxylating) EC 1.1.1.39 Phosphoenolpyruvate Carboxykinase (ATP) EC 4.1.1.49 Magnesium I38ZP9992A
LEADER 01000caa a22002652 4500
001 NLM215384709
003 DE-627
005 20250213161139.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/err458  |2 doi 
028 5 2 |a pubmed25n0718.xml 
035 |a (DE-627)NLM215384709 
035 |a (NLM)22330897 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peckmann, Klaus  |e verfasserin  |4 aut 
245 1 0 |a Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents  |b comparative operation of the cytochrome, alternative, and rotenone-resistant pathways 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2012 
500 |a Date Revised 25.11.2016 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their role in the control of the diurnal rhythm of malic and citric acids to a differential degree. In plants of both CAM types, the oxidative capacity of mitochondria, as well as the activity of CAM-linked mitochondrial enzymes, and of the alternative and the rotenone-resistant pathways of substrate oxidation were compared. Furthermore, a C₃ succulent was included, as well as both C₃ and CAM forms of Mesembryanthemum crystallinum during a salt-induced C₃-to-CAM shift. Mitochondria of PEPCK-type CAM plants exhibited a lower activity of malate oxidation, ratio of malate to succinate oxidation, and activity of mitochondrial NAD-ME. With the exception of Kalanchoë daigremontiana, leaf mitochondria of all other CAM species were highly sensitive to cyanide (80-100%), irrespective of the oxidant used. This indicates that the alternative oxidase is not of general importance in CAM. By contrast, rotenone-insensitive substrate oxidation was very high (50-90%) in all CAM species. This is the first comparison of the rotenone-insensitive pathway of respiration in plants with different CAM-types. The results of this study confirm that mitochondria are involved in the control of CAM to different degrees in the two CAM types, and they highlight the multiple roles of mitochondria in CAM 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Carboxylic Acids  |2 NLM 
650 7 |a Cyanides  |2 NLM 
650 7 |a Cytochromes  |2 NLM 
650 7 |a Malates  |2 NLM 
650 7 |a Pyruvates  |2 NLM 
650 7 |a Rotenone  |2 NLM 
650 7 |a 03L9OT429T  |2 NLM 
650 7 |a NAD  |2 NLM 
650 7 |a 0U46U6E8UK  |2 NLM 
650 7 |a Manganese  |2 NLM 
650 7 |a 42Z2K6ZL8P  |2 NLM 
650 7 |a NADP  |2 NLM 
650 7 |a 53-59-8  |2 NLM 
650 7 |a Acetyl Coenzyme A  |2 NLM 
650 7 |a 72-89-9  |2 NLM 
650 7 |a malic acid  |2 NLM 
650 7 |a 817L1N4CKP  |2 NLM 
650 7 |a Succinic Acid  |2 NLM 
650 7 |a AB6MNQ6J6L  |2 NLM 
650 7 |a Malate Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.37  |2 NLM 
650 7 |a malate dehydrogenase (decarboxylating)  |2 NLM 
650 7 |a EC 1.1.1.39  |2 NLM 
650 7 |a Phosphoenolpyruvate Carboxykinase (ATP)  |2 NLM 
650 7 |a EC 4.1.1.49  |2 NLM 
650 7 |a Magnesium  |2 NLM 
650 7 |a I38ZP9992A  |2 NLM 
700 1 |a von Willert, Dieter J  |e verfasserin  |4 aut 
700 1 |a Martin, Craig E  |e verfasserin  |4 aut 
700 1 |a Herppich, Werner B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 63(2012), 8 vom: 13. Mai, Seite 2909-19  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:63  |g year:2012  |g number:8  |g day:13  |g month:05  |g pages:2909-19 
856 4 0 |u http://dx.doi.org/10.1093/jxb/err458  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 63  |j 2012  |e 8  |b 13  |c 05  |h 2909-19