Stick-slip phenomenon in measurements of dynamic contact angles and surface viscoelasticity of poly(styrene-b-isoprene-b-styrene) triblock copolymers
In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 9 vom: 06. März, Seite 4283-92 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2012
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Butadienes Hemiterpenes Pentanes Polymers isoprene 0A62964IBU Styrene 44LJ2U959V |
Zusammenfassung: | In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a transition from stick-slip to a closely smooth motion for the SIS films with increasing PS content; the patterns almost vanish and the three-phase line appears to move overall smoothly on the film surface. The results show that the observed stick-slip pattern is strongly dependent on surface viscoelasticity. The jumping angle Δθ, which is defined as θ(1) - θ(2) (when a higher limit to θ(1) is obtained, the triple line "jumps" from θ(1) to θ(2) with increases in drop volume), was employed to scale the stick-slip behavior on various SIS film surfaces. Scanning force microscopy/atomic force microscopy (AFM) and sum frequency generation methods were used to investigate the surface structures of the films and the contributions of various possible factors to the observed stick-slip behavior. It was found that there is a linear relationship between jumping angle Δθ and the slope of the approach curve obtained from AFM force measurement. This means that the stick-slip behavior may be attributed mainly to surface viscoelasticity for SIS block copolymers. The measurement of jumping angle Δθ may be a valuable method for studying surface structure relaxation of polymer films |
---|---|
Beschreibung: | Date Completed 29.06.2012 Date Revised 21.11.2013 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la300119n |