Stick-slip phenomenon in measurements of dynamic contact angles and surface viscoelasticity of poly(styrene-b-isoprene-b-styrene) triblock copolymers

In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 9 vom: 06. März, Seite 4283-92
1. Verfasser: Zuo, Biao (VerfasserIn)
Weitere Verfasser: Zheng, Fan Fan, Zhao, Yu Rong, Chen, TianYu, Yan, Zhuo Hua, Ni, Huagang, Wang, Xinping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Butadienes Hemiterpenes Pentanes Polymers isoprene 0A62964IBU Styrene 44LJ2U959V
Beschreibung
Zusammenfassung:In this paper, a series of poly(styrene-b-isoprene-b-styrene) triblock copolymers (SIS), with different chemical components, was synthesized by anionic polymerization. The relationships between surface structures of these block copolymers and their stick-slip phenomena were investigated. There is a transition from stick-slip to a closely smooth motion for the SIS films with increasing PS content; the patterns almost vanish and the three-phase line appears to move overall smoothly on the film surface. The results show that the observed stick-slip pattern is strongly dependent on surface viscoelasticity. The jumping angle Δθ, which is defined as θ(1) - θ(2) (when a higher limit to θ(1) is obtained, the triple line "jumps" from θ(1) to θ(2) with increases in drop volume), was employed to scale the stick-slip behavior on various SIS film surfaces. Scanning force microscopy/atomic force microscopy (AFM) and sum frequency generation methods were used to investigate the surface structures of the films and the contributions of various possible factors to the observed stick-slip behavior. It was found that there is a linear relationship between jumping angle Δθ and the slope of the approach curve obtained from AFM force measurement. This means that the stick-slip behavior may be attributed mainly to surface viscoelasticity for SIS block copolymers. The measurement of jumping angle Δθ may be a valuable method for studying surface structure relaxation of polymer films
Beschreibung:Date Completed 29.06.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la300119n