Scale-invariant features and polar descriptors in omnidirectional imaging

We propose a method to compute scale-invariant features in omnidirectional images. We present a formulation based on the Riemannian geometry for the definition of differential operators on non-Euclidian manifolds that adapt to the mirror and lens structures in omnidirectional imaging. These operator...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 21(2012), 5 vom: 15. Mai, Seite 2412-23
1. Verfasser: Arican, Zafer (VerfasserIn)
Weitere Verfasser: Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM214960137
003 DE-627
005 20250213145535.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2012.2185937  |2 doi 
028 5 2 |a pubmed25n0716.xml 
035 |a (DE-627)NLM214960137 
035 |a (NLM)22287239 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arican, Zafer  |e verfasserin  |4 aut 
245 1 0 |a Scale-invariant features and polar descriptors in omnidirectional imaging 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.08.2012 
500 |a Date Revised 19.04.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a method to compute scale-invariant features in omnidirectional images. We present a formulation based on the Riemannian geometry for the definition of differential operators on non-Euclidian manifolds that adapt to the mirror and lens structures in omnidirectional imaging. These operators lead to a scale-space analysis that preserves the geometry of the visual information in omnidirectional images. We then build a novel scale-invariant feature detection framework for omnidirectional images that can be mapped on the sphere. We further present a new descriptor and feature matching solution for these omnidirectional images. The descriptor builds on the log-polar planar descriptors and adapts the descriptor computation to the specific geometry and the nonuniform sampling density of omnidirectional images. We also propose a rotation-invariant matching method that eliminates the orientation computation during the feature detection phase and thus decreases the computational complexity. Experimental results demonstrate that the new feature computation method combined with the adapted descriptors offers promising detection and matching performance, i.e., it improves on the common scale-invariant feature transform (SIFT) features computed on the unwrapped omnidirectional images, as well as spherical SIFT features. Finally, we show that the proposed framework also permits to match features between images with different native geometry 
650 4 |a Journal Article 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 21(2012), 5 vom: 15. Mai, Seite 2412-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:21  |g year:2012  |g number:5  |g day:15  |g month:05  |g pages:2412-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2012.2185937  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 21  |j 2012  |e 5  |b 15  |c 05  |h 2412-23