Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution

Copyright © 2012 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 52(2012) vom: 01. März, Seite 169-78
1. Verfasser: Zheng, Y H (VerfasserIn)
Weitere Verfasser: Li, X, Li, Y G, Miao, B H, Xu, H, Simmons, M, Yang, X H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antioxidants Chlorophyll 1406-65-1 Sodium Chloride 451W47IQ8X Ozone 66H7ZZK23N Abscisic Acid 72S9A8J5GW
Beschreibung
Zusammenfassung:Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Contrasting winter wheat cultivars, salt-tolerant DK961 and intolerant JN17, which sown in no salinity (-S) and salinity (+S) boxes were exposed to charcoal filtered air (CF) and elevated O(3) (+O(3)) in open top chambers (OTCs) for 30 days. In -S DK961 and JN17 plants, +O(3) DK961 and JN17 plants had significantly lower light-saturated net photosynthetic rates (A(sat), 26% and 24%), stomatal conductance (g(s), 20% and 32%) and chlorophyll contents (10% and 21%), while O(3) considerably increased foliar electrolyte leakage (13% and 39%), malondialdehyde content (9% and 23%), POD activity and ABA content. However, responses of these parameters to O(3) were significant in DK961 but not in JN17 in +S treatment. Correlation coefficient of DK961 reached significance level of 0.01, but it was not significant in JN17 under interaction of O(3) and salinity. O(3)-induced reductions were larger in shoot than in root in both cultivars. Results indicate that the salt-tolerant cultivar sustained less damage from salinity than did the intolerant cultivar but was severely injured by O(3) under +S condition. Therefore, selecting for greater salt tolerance may not lead to the expected gains in yield in areas of moderate (100 mM) salinity when O(3) is present in high concentrations. In contrast, salinity-induced stomatal closure effectively reduced sensitivity to O(3) in the salt-intolerant cultivar. Hence we suggest salt-tolerant winter wheat cultivars might be well adapted to areas of high (>100 mM) salinity and O(3) stress, while intolerant cultivars might be adaptable to areas of mild/moderate salinity but high O(3) pollution
Beschreibung:Date Completed 12.08.2013
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2012.01.007