Subspace learning from image gradient orientations

We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data are typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities very often fails to estimate reliably the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 34(2012), 12 vom: 21. Dez., Seite 2454-66
1. Verfasser: Tzimiropoulos, Georgios (VerfasserIn)
Weitere Verfasser: Zafeiriou, Stefanos, Pantic, Maja
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM214811697
003 DE-627
005 20231224024311.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0716.xml 
035 |a (DE-627)NLM214811697 
035 |a (NLM)22271825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tzimiropoulos, Georgios  |e verfasserin  |4 aut 
245 1 0 |a Subspace learning from image gradient orientations 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2013 
500 |a Date Revised 01.02.2013 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data are typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data population. We show that replacing pixel intensities with gradient orientations and the ℓ₂ norm with a cosine-based distance measure offers, to some extend, a remedy to this problem. Within this framework, which we coin Image Gradient Orientations (IGO) subspace learning, we first formulate and study the properties of Principal Component Analysis of image gradient orientations (IGO-PCA). We then show its connection to previously proposed robust PCA techniques both theoretically and experimentally. Finally, we derive a number of other popular subspace learning techniques, namely, Linear Discriminant Analysis (LDA), Locally Linear Embedding (LLE), and Laplacian Eigenmaps (LE). Experimental results show that our algorithms significantly outperform popular methods such as Gabor features and Local Binary Patterns and achieve state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition. In addition to this, the proposed IGO-methods require the eigendecomposition of simple covariance matrices and are as computationally efficient as their corresponding ℓ₂ norm intensity-based counterparts. Matlab code for the methods presented in this paper can be found at http://ibug.doc.ic.ac.uk/resources 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
700 1 |a Pantic, Maja  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 34(2012), 12 vom: 21. Dez., Seite 2454-66  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:34  |g year:2012  |g number:12  |g day:21  |g month:12  |g pages:2454-66 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2012  |e 12  |b 21  |c 12  |h 2454-66