Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions : a comparison of sunlight energized plasmonic photocatalytic activity

In this article, we report that Ag/AgBr nanostructures and the corresponding graphene oxide (GO) hybridized nanocomposite, Ag/AgBr/GO, could be facilely synthesized by means of a surfactant-assisted assembly protocol, where an oil/water microemulsion is used as the synthesis medium. We show that thu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 28(2012), 7 vom: 21. Feb., Seite 3385-90
1. Verfasser: Zhu, Mingshan (VerfasserIn)
Weitere Verfasser: Chen, Penglei, Liu, Minghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this article, we report that Ag/AgBr nanostructures and the corresponding graphene oxide (GO) hybridized nanocomposite, Ag/AgBr/GO, could be facilely synthesized by means of a surfactant-assisted assembly protocol, where an oil/water microemulsion is used as the synthesis medium. We show that thus-produced nanomaterials could be used as highly efficient and stable plasmonic photocatalysts for the photodegradation of methyl orange (MO) pollutant under sunlight irradiation. Compared with the bare Ag/AgBr nanospecies, Ag/AgBr/GO displays distinctly enhanced photocatalytic activity. More importantly, the as-prepared nanostructures exhibit higher photocatalytic activity than that of the corresponding Ag/AgBr-based nanomaterials synthesized viaa water/oil microemulsion and than that of the corresponding Ag/AgCl-based nanospecies synthesized by an oil/water microemulsion. An explanation has been proposed for these interesting findings. Our results suggest that thus-manufactured Ag/AgBr/GO plasmonic photocatalysts are promising alternatives to the traditional UV light or visible-light driven photocatalysts
Beschreibung:Date Completed 30.07.2012
Date Revised 22.02.2012
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la204452p