Automatic image annotation and retrieval using group sparsity

Automatically assigning relevant text keywords to images is an important problem. Many algorithms have been proposed in the past decade and achieved good performance. Efforts have focused upon model representations of keywords, whereas properties of features have not been well investigated. In most...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 42(2012), 3 vom: 17. Juni, Seite 838-49
1. Verfasser: Zhang, Shaoting (VerfasserIn)
Weitere Verfasser: Huang, Junzhou, Li, Hongsheng, Metaxas, Dimitris N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM214600416
003 DE-627
005 20250213135553.0
007 cr uuu---uuuuu
008 231224s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2011.2179533  |2 doi 
028 5 2 |a pubmed25n0715.xml 
035 |a (DE-627)NLM214600416 
035 |a (NLM)22249744 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shaoting  |e verfasserin  |4 aut 
245 1 0 |a Automatic image annotation and retrieval using group sparsity 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.09.2012 
500 |a Date Revised 16.05.2012 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Automatically assigning relevant text keywords to images is an important problem. Many algorithms have been proposed in the past decade and achieved good performance. Efforts have focused upon model representations of keywords, whereas properties of features have not been well investigated. In most cases, a group of features is preselected, yet important feature properties are not well used to select features. In this paper, we introduce a regularization-based feature selection algorithm to leverage both the sparsity and clustering properties of features, and incorporate it into the image annotation task. Using this group-sparsity-based method, the whole group of features [e.g., red green blue (RGB) or hue, saturation, and value (HSV)] is either selected or removed. Thus, we do not need to extract this group of features when new data comes. A novel approach is also proposed to iteratively obtain similar and dissimilar pairs from both the keyword similarity and the relevance feedback. Thus, keyword similarity is modeled in the annotation framework. We also show that our framework can be employed in image retrieval tasks by selecting different image pairs. Extensive experiments are designed to compare the performance between features, feature combinations, and regularization-based feature selection methods applied on the image annotation task, which gives insight into the properties of features in the image annotation task. The experimental results demonstrate that the group-sparsity-based method is more accurate and stable than others 
650 4 |a Journal Article 
700 1 |a Huang, Junzhou  |e verfasserin  |4 aut 
700 1 |a Li, Hongsheng  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 42(2012), 3 vom: 17. Juni, Seite 838-49  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:42  |g year:2012  |g number:3  |g day:17  |g month:06  |g pages:838-49 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2011.2179533  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2012  |e 3  |b 17  |c 06  |h 838-49