Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces

The propensity of silver nanoparticles (AgNPs) having two different polymer coatings (poly(vinylpyrrolidone), PVP, or gum arabic, GA) to aggregate, or to deposit to a reference surface (silica), was explored as a basis for differentiating the effect of surface coating on the stability of nanoparticl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 28(2012), 9 vom: 06. März, Seite 4178-86
1. Verfasser: Lin, Shihong (VerfasserIn)
Weitere Verfasser: Cheng, Yingwen, Liu, Jie, Wiesner, Mark R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2012
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Polymers Pyrrolidines Silver 3M4G523W1G
Beschreibung
Zusammenfassung:The propensity of silver nanoparticles (AgNPs) having two different polymer coatings (poly(vinylpyrrolidone), PVP, or gum arabic, GA) to aggregate, or to deposit to a reference surface (silica), was explored as a basis for differentiating the effect of surface coating on the stability of nanoparticles in aggregation and in deposition. Surface polymeric coatings stabilize nanoparticles against aggregation as shown by either an increased critical coagulation concentration as for PVP-coated AgNPs (AgPVP) or the absence of observable aggregation even at a high ionic strength as for GA-coated AgNPs (AgGA). In experiments of AgNPs deposition in a silica porous medium, dissimilar surfaces favored deposition, such as the case where polymer coatings were present on the AgNPs but were absent on the porous medium. The increased affinity of the AgNPs for the porous medium in this case may be explained by a shifted contact frontier where electrical double layer interaction is weaker. When coating polymers were introduced to the porous medium and allowed to preadsorb to the silica surfaces, the attachment efficiencies for both the AgPVP and AgGA were reduced due to steric and electrosteric stabilization, respectively. The results suggest that polymeric coatings that are usually deemed as stabilizers (as they indeed are in the case of autoaggregation) might not necessarily stabilize nanoparticles against deposition unless the collector surfaces are also coated with polymer
Beschreibung:Date Completed 29.06.2012
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la202884f